The ATP-competitive mTOR inhibitor INK128 enhances in vitro and in vivo radiosensitivity of pancreatic carcinoma cells.
نویسندگان
چکیده
PURPOSE Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines. EXPERIMENTAL DESIGN Clonogenic survival was used to determine the effects of INK128 on in vitro radiosensitivity of three pancreatic carcinoma cell lines and a normal fibroblast cell line with mTOR activity defined using immunoblots. DNA double-strand breaks were evaluated according to γH2AX foci. The influence of INK128 on radiation-induced gene translation was determined by microarray analysis of polysome-bound mRNA. Leg tumor xenografts grown from pancreatic carcinoma cells were evaluated for mTOR activity, eIF4F cap complex formation, and tumor growth delay. RESULTS INK128, while inhibiting mTOR activity in each of the cell lines, enhanced the in vitro radiosensitivity of the pancreatic carcinoma cells but had no effect on normal fibroblasts. The dispersal of radiation-induced γH2AX foci was inhibited in pancreatic carcinoma cells by INK128 as were radiation-induced changes in gene translation. Treatment of mice with INK128 resulted in an inhibition of mTOR activity as well as cap complex formation in tumor xenografts. Whereas INK128 alone had no effect of tumor growth rate, it enhanced the tumor growth delay induced by single and fractionated doses of radiation. CONCLUSION These results indicate that mTOR inhibition induced by INK128 enhances the radiosensitivity of pancreatic carcinoma cells and suggest that this effect involves the inhibition of DNA repair.
منابع مشابه
Cancer Therapy: Preclinical The ATP-Competitive mTOR Inhibitor INK128 Enhances In Vitro and In Vivo Radiosensitivity of Pancreatic Carcinoma Cells
Purpose: Radiotherapy remains a primary treatment modality for pancreatic carcinoma, a tumor characterized by aberrant mTOR activity. Given the regulatory role of mTOR in gene translation, in this study, we defined the effects of the clinically relevant, ATP-competitive mTOR inhibitor, INK128 on the radiosensitivity of pancreatic carcinoma cell lines. Experimental Design: Clonogenic survival wa...
متن کاملTargeted inhibition of mammalian target of rapamycin (mTOR) enhances radiosensitivity in pancreatic carcinoma cells
The mammalian target of rapamycin (mTOR) is a protein kinase that regulates protein translation, cell growth, and apoptosis. Rapamycin (RPM), a specific inhibitor of mTOR, exhibits potent and broad in vitro and in vivo antitumor activity against leukemia, breast cancer, and melanoma. Recent studies showing that RPM sensitizes cancers to chemotherapy and radiation therapy have attracted consider...
متن کاملThe preclinical evaluation of the dual mTORC1/2 inhibitor INK-128 as a potential anti-colorectal cancer agent
The colorectal cancer is the leading contributor of cancer-related mortality. Mammalian target of rapamycin (mTOR), existing in 2 complexes (mTORC1/2), is frequently dysregulated and constitutively activated in colorectal cancers. It represents an important drug target. Here we found that INK-128, the novel ATP-competitive kinase inhibitor of mTOR, blocked both mTORC1 and mTORC2 activation in c...
متن کاملmiR-26b enhances radiosensitivity of hepatocellular carcinoma cells by targeting EphA2
Objective(s): Although low-dose radiotherapy (RT) that involves low collateral damage is more suitable for hepatocellular carcinoma (HCC) than traditional high-dose RT, but to achieve satisfactory therapeutic effect with low-dose RT, it is necessary to sensitize HCC cells to irradiation. This study was aimed to determine whether radiosensitivity of HCC cells can be enhanced using miR-26b by tar...
متن کاملQuinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway
Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 1 شماره
صفحات -
تاریخ انتشار 2014